
NAME

 dxa - 6502/R65C02 disassembler

SYNOPSIS

 dxa [OPTION]... FILE

DESCRIPTION

 dxa is the semi-official disassembler option for the xa(1)
 package, a weakly patched version of Marko Mäkelä's d65
 disassembler that generates output similar to the de facto
 coding conventions used for xa(1). The package is designed
 to intelligently(?) scan arbitrary code and (with hints) can
 identify the difference between data and valid machine code,
 generating a sane looking, "perfect" disassembly with data
 and code portions.

 Perfect, in this case, means that you can take what dxa
 spits out and feed it right back into xa(1), and get the
 exact same object file you started with, even if sometimes
 dxa can't identify everything correctly. With a few extra
 options, you can tease and twist the output to generate
 something not quite so parseable, or even more like true
 assembler source.

OPTIONS

 For historical and compatibility reasons, the long options
 (--) only exist if dxa were compiled with LONG_OPTIONS
 enabled in options.h.

 --datablock xxxx-yyyy

 -b xxxx-yyyy
 Defines the memory range xxxx to yyyy (hexadecimal,
 inclusive) to be a data block. The memory range can be
 further specified:

 * If the range is preceded by ! (an exclamation
 point), such as !c000-cfff, then it is further
 defined to be a data block with no vectors in it
 either.

 * If the range is preceded by ? (a question mark),
 then it is further defined to be a data block that
 is completely unused and therefore no valid
 routine may contain instructions whose parameter
 lie in this range. Useful for providing enhanced
 protection against misinterpreting data to be
 program code, but be careful, or some code may be
 listed as data. For instance, the Commodore 64
 firmware uses the base address $CFFF when
 initializing the video chip, and the BASIC
 interpreter uses the addresses $9FEA and $9FEB
 while loading the instruction pointers. In
 addition to this, there are a number of BIT
 instructions used for skipping the next
 instruction. Thus, you must allow addresses like
 $1A9, $2A9 and so on.

 --datablocks filename

 -B filename
 Reads data blocks from file filename as if they had
 been specified on the command line, one per line (such
 as xxxx-yyyy, ?xxxx-yyyy, etc.).

 --labels filename

 -l filename
 Causes label names to be read from file filename. This
 file format is the same as the labelfile/symbol table
 file generated by xa(1) with the -l option. The -l was
 chosen on purpose for consistency with xa(1).

 --routine xxxx

 -r xxxx
 Specifies an address (in hexadecimal) that is declared
 to be a valid routine. It is strongly recommended that
 you specify the initial execution address as a routine.
 For example, for a Commodore 64 binary with a SYS 2064
 header, add -r0810 so that disassembly starts at that
 location. This may have interactions with datablock
 detection (-d).

 --routines filename

 -R filename
 Causes a list of routines to be read from file
 filename, one per line as if they had been specified on
 the command line.

 --addresses option

 -a option
 Determines if and what kind of address information
 should be dumped with the disassembly, if any. Note
 that this may make your output no longer intelligible
 to xa(1). The valid options are:

 disabled
 Dump source only with no address information. This

 is the default.

 enabled
 Write the current address at the beginning of each
 line.

 dump Write the current address at the beginning of each
 line, along with a hexdump of the bytes for which
 the statement was generated.

 --colon-newline

 -N

 --no-colon-newline

 -n A purely cosmetic option to determine how labels are
 emitted. Many people, including myself, prefer a
 listing where the label is given, then a tab, then the
 code (-n). Since this is my preference, it's the
 default. On the other hand, there are also many who
 prefer to have the label demarcated by a colon and a
 newline, and the code beginning indented on the next
 line. This is the way d65 used to do it, and is still
 supported with -N.

 --processor option

 -p option
 Specify the instruction set. Note that specifying an
 instruction set that permits and disassembles illegal
 and/or undocumented NMOS opcodes may make your output
 unintelligible to xa(1). Only one may be specified.
 The valid options are:

 standard-nmos6502
 Only official opcodes will be recognized. This is
 the default.

 r65c02
 Opcodes specific to the Rockwell 65C02 (R65C02)
 will also be allowed.

 all-nmos6502
 Allows all 256 NMOS opcodes to be disassembled,
 whether documented or undocumented. Note that
 instructions generated by this mode are not
 guaranteed to work on all NMOS 6502s.

 rational-nmos6502
 Only allows "rational" undocumented instructions.
 This excludes ANE, SHA, SHS, SHY, SHX, LXA and
 LAXS. This is a judgment call.

 useful-nmos6502
 Only allows "useful" undocumented instructions.
 This excludes ANE, SHA, SHS, SHY, SHX, LXA, LAXS,
 NOOP and STP. This is a judgment call.

 traditional-nmos6502
 Only allows the most widely accepted undocumented

 instructions based on combinations of ALU and RMW
 operations. This excludes ANE, SHA, SHS, SHY, SHX,
 LXA, LAXS, NOOP, STP, ARR, ASR, ANC, SBX and USBC.
 This is a judgment call.

 --get-sa

 -G

 --no-get-sa xxxx

 -g xxxx
 Enables or disables automatic starting address
 detection. If enabled (the default), dxa looks at the
 first two bytes as a 16-bit word in 6502 little-endian
 format and considers that to be the starting address
 for the object, discarding them without further
 interpretation. This is very useful for Commodore
 computers in particular. If your binary does not have a
 starting address, you must specify one using -g or --
 no-get-sa followed by a hexadecimal address. The
 starting address will then be encoded into the output
 using * =.

 --no-word-sa

 -q

 --word-sa

 -Q Only relevant if automatic starting address detection
 is enabled. If so, the default is to also emit the
 starting address as a .word pseudo-op before the
 starting address indicated with * = so that it will be
 regenerated on re-assembly (-Q). Otherwise, if this
 option is disabled, the starting address word will not
 be re-emitted and will need to be tacked back on if the
 target requires it. If you specify an address with -g,
 then that address will be used here too.

 --verbose

 -v Enables verbose output, which may or may not be useful
 in the same way that Schroedinger's Cat may or may not
 be dead.

 --help

 -?

 -V A quick summary of options.

 The following options control how program code is scanned
 and determined to be a valid (or invalid) portion of a
 putative routine.

 --datablock-detection option

 -d option
 This controls how the program automatically detects
 data blocks for addresses where no previous hints are

 specified. Only one method may be specified. The valid
 options are:

 poor As much as the object as possible will be listed
 as program code, even if there are illegal
 instructions present. This is the default.

 strict
 Assumes that all declared routines call and
 execute only valid instructions. If any portion of
 code declared as a routine leads to an address
 block containing illegal opcodes, a consistency
 error will occur and disassembly will stop.

 skip-scanning
 Program addresses that are not referenced by any
 routine will not be scanned for valid routines
 (thus data a priori).

 --no-external-labels

 -e

 --external-labels

 -E Controls whether labels should be generated for
 addresses outside of the program itself. The default is
 not to (i.e., leave the addresses absolute).

 --address-tables option

 -t option
 Controls detection of address tables/dispatch tables.
 The following options are available:

 ignore
 Don't attempt to detect address tables.

 detect-all
 Address tables referencing any label will be
 detected.

 detect-internal
 Address tables with labels whose addresses lie
 within the program's address range will be
 detected. This is the default.

 --no-suspect-jsr

 -j

 --suspect-jsr

 -J These options indicate whether JSRs are always expected
 to return to the following instruction or not. This
 will affect how routines are parsed. For example, the
 Commodore 128 KERNAL has a routine called PRIMM that
 prints a null-terminated string directly following the
 JSR instruction, returning after the null byte. In this
 case, -J should be specified to alert the disassembler
 that this is possible. The default is to expect

 "normal" JSRs (i.e., -j).

 --no-one-byte-routines

 -o

 --one-byte-routines

 -O These options permit or inhibit a single RTS, RTI or
 BRK instruction (or STP if enabled by the instruction
 set), or a conditional branch, from being automatically
 identified as a routine. The default is to inhibit
 this; specific cases may be selectively overridden with
 the -r option.

 --no-stupid-jumps

 -m

 --stupid-jumps

 -M These options consider jumps or branches to the current
 address (such as JMP *, BCC *) to be invalid or valid
 code depending on which is specified. Note that BVC *
 is always accepted as the V flag can sometimes be
 toggled by an external hardware signal. The default is
 to consider them invalid otherwise.

 --no-allow-brk
 -w

 --allow-brk

 -W These options control if BRK (or STP if enabled by the
 instruction set) should be treated as a valid exit from
 a routine, just like RTS or RTI. The default is not to
 do so.

 --no-suspect-branches

 -c

 --suspect-branches

 -C These options are rarely needed, but account for the
 case where a program may intentionally obfuscate its
 code using branches with unusual destination addresses
 like LDA #2:BEQ *-1. In the default case, this would be
 considered to be invalid and not treated as a routine
 (-c); if -C is specified, it would be accepted as
 valid.

BUGS/TO-DO

 There are probably quite a few bugs yet to be found.

 65816 opcodes are not (yet) supported.

 The disassembler can easily be confused by the common idiom
 of tacking on BASIC text to call an appended ML routine.
 There probably should be a special case option for this. One
 workaround is to use the --datablock option and specify the
 range as unused (such as in the case of 10 SYS2061
 (Commodore), giving -b ?0801-080c to ignore that range as
 data).

 There are a few options Marko created that aren't hooked up
 to anything (and are not documented here on purpose). I
 might finish these later.

SEE ALSO

 xa(1), file65(1), ldo65(1), printcbm(1), reloc65(1),
 uncpk(1)

AUTHOR

 This manual page was written by Cameron Kaiser
 <ckaiser@floodgap.com>. dxa is based on d65 0.2.1 by Marko
 Mäkelä. Original package (C)1993, 1994, 2000 Marko Mäkelä.
 Additional changes (C)2006 Cameron Kaiser. dxa is
 maintained independently.

WEBSITE

 http://www.floodgap.com/retrotech/xa/

